Package: moderndive (via r-universe)

September 2, 2024

Type Package

Title Tidyverse-Friendly Introductory Linear Regression

Version 0.7.0.9000

Maintainer Albert Y. Kim <albert.ys.kim@gmail.com>

Description Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in ``Statistical Inference via Data Science: A ModernDive into R and the Tidyverse" available at <https://moderndive.com/>.

Depends R (>= 3.4.0)

License GPL-3

Encoding UTF-8

LazyData true

URL https://moderndive.github.io/moderndive/,

https://github.com/moderndive/moderndive/

BugReports https://github.com/moderndive/moderndive/issues

Imports magrittr, dplyr, purrr, tidyr, ggplot2, tibble, janitor, broom (>= 0.4.3), formula.tools, stringr, knitr, infer, rlang (>= 0.2.0), glue

RoxygenNote 7.3.2

Suggests testthat, covr, rmarkdown, vdiffr, openintro, patchwork, viridis, readr, nycflights13, nycflights23

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

Repository https://moderndive.r-universe.dev

RemoteUrl https://github.com/moderndive/moderndive

RemoteRef HEAD

RemoteSha 349e39fb6737d014579060e992be88cdce5e8f83

Contents

alaska_flights	3
almonds_bowl	4
almonds_sample	4
almonds_sample_100	5
amazon_books	5
avocados	6
babies	7
bowl	8
bowl_samples	8
bowl_sample_1	9
coffee_quality	10
coffee_ratings	11
DD_vs_SB	13
early_january_2023_weather	13
early_january_weather	14
envoy_flights	15
evals	16
ev_charging	17
geom_categorical_model	18
geom_parallel_slopes	20
get_correlation	
get_regression_points	
get_regression_summaries	
get_regression_table	26
gg_parallel_slopes	
house_prices	
ipf_lifts	
mario_kart_auction	31
mass_traffic_2020	32
MA_schools	32
ma_traffic_2020_vs_2019	33
moderndive	34
movies_sample	
mythbusters_yawn	
old_faithful_2024	
orig_pennies_sample	
pennies	
pennies_resamples	39
pennies_sample	39
pop_sd	40
promotions	40
promotions_shuffled	41
saratoga_houses	42
spotify_52_original	42
spotify_52_shuffled	43
spotify_by_genre	44

alaska_flights

tidy_	e_prop_ summar	у						•				•							•	•	•	•		•		•			•	•	•	•	•		46
un_m	ember_	states_	_2024	• .	•	•	•	•	•	•	•	• •	 •	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	47 50

alaska_flights Alaska flights data

Description

Index

On-time data for all Alaska Airlines flights that departed NYC (i.e. JFK, LGA or EWR) in 2013. This is a subset of the flights data frame from nycflights13.

Usage

alaska_flights

Format

A data frame of 714 rows representing Alaska Airlines flights and 19 variables

year, month, day Date of departure.

dep_time, arr_time Actual departure and arrival times (format HHMM or HMM), local tz.

sched_dep_time, sched_arr_time Scheduled departure and arrival times (format HHMM or HMM), local tz.

dep_delay, arr_delay Departure and arrival delays, in minutes. Negative times represent early departures/arrivals.

carrier Two letter carrier abbreviation. See nycflights13::airlines to get name.

flight Flight number.

tailnum Plane tail number. See nycflights13::planes for additional metadata.

origin, dest Origin and destination. See nycflights13::airports for additional metadata.

air_time Amount of time spent in the air, in minutes.

distance Distance between airports, in miles.

hour, minute Time of scheduled departure broken into hour and minutes.

time_hour Scheduled date and hour of the flight as a POSIXct date. Along with origin, can be used to join flights data to nycflights13::weather data.

Source

RITA, Bureau of transportation statistics

See Also

nycflights13::flights.

almonds_bowl

Description

5000 chocolate-covered almonds selected from a large batch, weighed in grams.

Usage

almonds_bowl

Format

A data frame with 5000 observations on the following 2 variables

ID Identification value for a given chocolate-covered almond

weight Weight of the chocolate-covered almond in grams (to the nearest tenth)

almonds_sample Chocolate-covered almonds data sample of size 25

Description

A sample of 25 chocolate-covered almonds, weighed in grams.

Usage

almonds_sample

Format

A data frame with 25 observations on the following 2 variables

replicate Replicate number set to 1 since there is only one sample

ID Identification value for a given chocolate-covered almond

weight Weight of the chocolate-covered almond in grams (to the nearest tenth)

almonds_sample_100 Chocolate-covered almonds data sample of size 100

Description

A sample of 100 chocolate-covered almonds, weighed in grams.

Usage

almonds_sample_100

Format

A data frame with 100 observations on the following 2 variables

replicate Replicate number set to 1 since there is only one sample

ID Identification value for a given chocolate-covered almond

weight Weight of the chocolate-covered almond in grams (to the nearest tenth)

amazon_books Sample of Amazon books

Description

A random sample of 325 books from Amazon.com.

Usage

amazon_books

Format

A data frame of 325 rows representing books listed on Amazon and 13 variables.

title Book title

author Author who wrote book

list_price recommended retail price of book

amazon_price lowest price of book shown on Amazon

hard_paper book is either hardcover or paperback

num_pages number of pages in book

publisher Company that issues the book for sale

pub_year Year the book was published

isbn_10 10-character ISBN number

height, width, thick, weight_oz height, width, weight and thickness of the book

Source

The Data and Story Library (DASL) https://dasl.datadescription.com/datafile/amazon-books

avocados

Avocado Prices by US Region

Description

Gathered from https://docs.google.com/spreadsheets/d/1cNuj9V-9Xe8fqV3DQRhvsXJhER3zTk01dSsQ1Q0j96g/edit#gid=1419070688

Usage

avocados

Format

A data frame of 54 regions over 3 years of weekly results

date Week of Data Recording

average_price Average Price of Avocado

total_volume Total Amount of Avocados

small_hass_sold Amount of Small Haas Avocados Sold

large_hass_sold Amount of Large Haas Avocados Sold

xlarge_hass_sold Amount of Extra Large Haas Avocados Sold

total_bags Total Amount of Bags of Avocados

small_bags Total Amount of Bags of Small Haas Avocados

large_bags Total Amount of Bags of Large Haas Avocados

x_large_bags Total Amount of Bags of Extra Large Haas Avocados

type Type of Sale

year Year of Sale

region Region Where Sale Took Place

babies

Description

Data on maternal smoking and infant health

Usage

babies

Format

A data frame of 1236 rows of individual mothers.

id Identification number

pluralty Marked 5 for single fetus, otherwise number of fetuses

outcome Marked 1 for live birth that survived at least 28 days

date Birth date where 1096 is January 1st, 1961

birthday Birth date in mm-dd-yyyy format

gestation Length of gestation in days, marked 999 if unknown

- sex Infant's sex, where 1 is male, 2 is female, and 9 is unknown
- wt Birth weight in ounces, marked 999 if unknown
- **parity** Total number of previous pregnancies including fetal deaths and stillbirths, marked 99 if unknown
- **race** Mother's race where 0-5 is white, 6 is Mexican, 7 is Black, 8 is Asian, 9 is mixed, and 99 is unknown
- age Mother's age in years at termination of pregnancy, 99=unknown
- ed Mother's education 0= less than 8th grade, 1 = 8th -12th grade did not graduate, 2= HS graduate-no other schooling, 3= HS+trade, 4=HS+some college 5= College graduate, 6&7 Trade school HS unclear, 9=unknown
- ht Mother's height in inches to the last completed inch, 99=unknown
- wt_1 Mother prepregnancy wt in pounds, 999=unknown
- drace Father's race, coding same as mother's race
- dage Father's age, coding same as mother's age
- ded Father's education, coding same as mother's education
- dht Father's height, coding same as for mother's height
- dwt Father's weight coding same as for mother's weight

marital 0= legally separated, 1=married, 2= divorced, 3=widowed, 5=never married

inc Family yearly income in \$2500 increments 0 = under 2500, 1=2500-4999, ..., 8= 12,500-14,999, 9=15000+, 98=unknown, 99=not asked

- smoke Does mother smoke? 0=never, 1= smokes now, 2=until current pregnancy, 3=once did, not now, 9=unknown
- **time** If mother quit, how long ago? 0=never smoked, 1=still smokes, 2=during current preg, 3=within 1 yr, 4= 1 to 2 years ago, 5= 2 to 3 yr ago, 6= 3 to 4 yrs ago, 7=5 to 9yrs ago, 8=10+yrs ago, 9=quit and don't know, 98=unknown, 99=not asked
- **number** Number of cigs smoked per day for past and current smokers 0=never, 1=1-4, 2=5-9, 3=10-14, 4=15-19, 5=20-29, 6=30-39, 7=40-60, 8=60+, 9=smoke but don't know, 98=un-known, 99=not asked

Source

Data on maternal smoking and infant health from https://www.stat.berkeley.edu/~statlabs/labs.html

bowl

A sampling bowl of red and white balls

Description

A sampling bowl used as the population in a simulated sampling exercise. Also known as the urn sampling framework https://en.wikipedia.org/wiki/Urn_problem.

Usage

bowl

Format

A data frame 2400 rows representing different balls in the bowl, of which 900 are red and 1500 are white.

ball_ID ID variable used to denote all balls. Note this value is not marked on the balls themselves **color** color of ball: red or white

bowl_samples Sampling from a bowl of balls

Description

Counting the number of red balls in 10 samples of size n = 50 balls from https://github.com/ moderndive/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage

bowl_samples

Format

A data frame 10 rows representing different groups of students' samples of size n = 50 and 5 variables

group Group name

red Number of red balls sampled

white Number of white balls sampled

green Number of green balls sampled

n Total number of balls samples

See Also

bowl()

bowl_sample_1

Tactile sample of size 50 from a bowl of balls

Description

A single tactile sample of size n = 50 balls from https://github.com/moderndive/moderndive/ blob/master/data-raw/sampling_bowl.jpeg

Usage

bowl_sample_1

Format

A data frame of 50 rows representing different balls and 1 variable.

color Color of ball sampled

See Also

bowl()

coffee_quality

Description

This dataset contains detailed information about coffee quality evaluations from various origins. It includes data on the country and continent of origin, farm name, lot number, and various quality metrics. The dataset also includes attributes related to coffee processing, grading, and specific sensory attributes.

Usage

coffee_quality

Format

A data frame with 207 rows and 30 variables:

country_of_origin character. The country where the coffee originated. continent_of_origin character. The continent where the coffee originated. farm_name character. The name of the farm where the coffee was grown. lot_number character. The lot number assigned to the batch of coffee. mill character. The name of the mill where the coffee was processed. **company** character. The company associated with the coffee batch. altitude character. The altitude range (in meters) where the coffee was grown. region character. The specific region within the country where the coffee was grown. producer character. The name of the coffee producer. in_country_partner character. The in-country partner organization associated with the coffee batch. harvest_year character. The year or range of years during which the coffee was harvested. grading date date. The date when the coffee was graded. owner character. The owner of the coffee batch. variety character. The variety of the coffee plant. processing_method character. The method used to process the coffee beans. aroma numeric. The aroma score of the coffee, on a scale from 0 to 10. **flavor** numeric. The flavor score of the coffee, on a scale from 0 to 10. aftertaste numeric. The aftertaste score of the coffee, on a scale from 0 to 10. acidity numeric. The acidity score of the coffee, on a scale from 0 to 10. **body** numeric. The body score of the coffee, on a scale from 0 to 10. **balance** numeric. The balance score of the coffee, on a scale from 0 to 10. uniformity numeric. The uniformity score of the coffee, on a scale from 0 to 10.

coffee_ratings

clean_cup numeric. The clean cup score of the coffee, on a scale from 0 to 10.
sweetness numeric. The sweetness score of the coffee, on a scale from 0 to 10.
overall numeric. The overall score of the coffee, on a scale from 0 to 10.
total_cup_points numeric. The total cup points awarded to the coffee, representing the sum of various quality metrics.
moisture_percentage numeric. The moisture percentage of the coffee beans.
color character. The color description of the coffee beans.
expiration character. The expiration date of the coffee batch.
certification_body character. The body that certified the coffee batch.

Source

Coffee Quality Institute

coffee_ratings Data from the Coffee Quality Institute's review pages in January 2018

Description

1,340 digitized reviews on coffee samples from https://database.coffeeinstitute.org/.

Usage

coffee_ratings

Format

A data frame of 1,340 rows representing each sample of coffee.

total_cup_points Number of points in final rating (scale of 0-100)
species Species of coffee bean plant (Arabica or Robusta)
owner Owner of coffee plant farm
country_of_origin Coffee bean's country of origin
farm_name Name of coffee plant farm
lot_number Lot number for tested coffee beans
mill Name of coffee bean's processing facility
ico_number International Coffee Organization number
company Name of coffee bean's company
altitude Altitude at which coffee plants were grown
region Region where coffee bean roaster
number_of_bags Number of tested bags

coffee_ratings

- **bag_weight** Tested bag weight
- in_country_partner Partner for the country
- harvest_year Year the coffee beans were harvested
- grading_date Day the coffee beans were graded
- owner_1 Owner of the coffee beans
- variety Variety of the coffee beans
- processing_method Method used for processing the coffee beans
- aroma Coffee aroma rating
- flavor Coffee flavor rating
- aftertaste Coffee aftertaste rating
- acidity Coffee acidity rating
- body Coffee body rating
- balance Coffee balance rating
- uniformity Coffee uniformity rating
- clean_cup Cup cleanliness rating
- sweetness Coffee sweetness rating
- cupper_points Cupper Points, an overall rating for the coffee
- moisture Coffee moisture content
- category_one_defects Number of category one defects for the coffee beans
- quakers Number of coffee beans that don't dark brown when roasted
- color Color of the coffee beans
- category_two_defects Number of category two defects for the coffee beans
- expiration Expiration date of the coffee beans
- certification_body Entity/Institute that certified the coffee beans
- certification_address Body address of certification for coffee beans
- certification_contact Certification contact for coffee beans
- **unit_of_measurement** Unit of measurement for altitude
- altitude_low_meters Lower altitude level coffee beans grow at
- altitude_high_meters Higher altitude level coffee beans grow at
- altitude_mean_meters Average altitude level coffee beans grow at

Source

Coffee Quality Institute. Access cleaned data available at https://github.com/jldbc/coffee-quality-database

Description

Number of Dunkin Donuts & Starbucks, median income, and population in 1024 census tracts in eastern Massachusetts in 2016.

Usage

DD_vs_SB

Format

A data frame of 1024 rows representing census tracts and 6 variables

county County where census tract is located. Either Bristol, Essex, Middlesex, Norfolk, Plymouth, or Suffolk county

FIPS Federal Information Processing Standards code identifying census tract

median_income Median income of census tract

population Population of census tract

shop_type Coffee shop type: Dunkin Donuts or Starbucks

shops Number of shops

Source

US Census Bureau. Code used to scrape data available at https://github.com/DelaneyMoran/ FinalProject

early_january_2023_weather

Early January hourly weather data for 2023

Description

Hourly meteorological data for LGA, JFK and EWR for the month of January 2023. This is a subset of the weather data frame from nycflights23.

Usage

early_january_2023_weather

Format

A data frame of 360 rows representing hourly measurements and 15 variables

origin Weather station. Named origin to facilitate merging with nycflights23::flights data. **year, month, day, hour** Time of recording.

temp, dewp Temperature and dewpoint in F.

humid Relative humidity.

wind_dir, wind_speed, wind_gust Wind direction (in degrees), speed and gust speed (in mph).

precip Precipitation, in inches.

pressure Sea level pressure in millibars.

visib Visibility in miles.

time_hour Date and hour of the recording as a POSIXct date.

Source

ASOS download from Iowa Environmental Mesonet, https://mesonet.agron.iastate.edu/ request/download.phtml.

See Also

nycflights23::weather.

early_january_weather Early January hourly weather data

Description

Hourly meteorological data for LGA, JFK and EWR for the month of January 2013. This is a subset of the weather data frame from nycflights13.

Usage

early_january_weather

Format

A data frame of 358 rows representing hourly measurements and 15 variables

origin Weather station. Named origin to facilitate merging with nycflights13::flights data.

year, month, day, hour Time of recording.

temp, dewp Temperature and dewpoint in F.

humid Relative humidity.

wind_dir, wind_speed, wind_gust Wind direction (in degrees), speed and gust speed (in mph).

precip Precipitation, in inches.

pressure Sea level pressure in millibars.

visib Visibility in miles.

time_hour Date and hour of the recording as a POSIXct date.

envoy_flights

Source

ASOS download from Iowa Environmental Mesonet, https://mesonet.agron.iastate.edu/ request/download.phtml.

See Also

nycflights13::weather.

envoy_flights Envoy Air flights data for 2023

Description

On-time data for all Envoy Air flights that departed NYC (i.e. JFK, LGA or EWR) in 2023. This is a subset of the flights data frame from nycflights23.

Usage

envoy_flights

Format

A data frame of 357 rows representing Alaska Airlines flights and 19 variables

year, month, day Date of departure.

dep_time, arr_time Actual departure and arrival times (format HHMM or HMM), local tz.

- **dep_delay, arr_delay** Departure and arrival delays, in minutes. Negative times represent early departures/arrivals.
- carrier Two letter carrier abbreviation. See nycflights23::airlines to get name.

flight Flight number.

tailnum Plane tail number. See nycflights23::planes for additional metadata.

origin, dest Origin and destination. See nycflights23::airports for additional metadata.

air_time Amount of time spent in the air, in minutes.

distance Distance between airports, in miles.

hour, minute Time of scheduled departure broken into hour and minutes.

time_hour Scheduled date and hour of the flight as a POSIXct date. Along with origin, can be used to join flights data to nycflights23::weather data.

Source

RITA, Bureau of transportation statistics

See Also

nycflights23::flights.

Description

The data are gathered from end of semester student evaluations for a sample of 463 courses taught by 94 professors from the University of Texas at Austin. In addition, six students rate the professors' physical appearance. The result is a data frame where each row contains a different course and each column has information on either the course or the professor https://www.openintro.org/data/index.php?data=evals

Usage

evals

Format

A data frame with 463 observations corresponding to courses on the following 13 variables.

ID Identification variable for course.

prof_ID Identification variable for professor. Many professors are included more than once in this dataset.

score Average professor evaluation score: (1) very unsatisfactory - (5) excellent.

age Age of professor.

bty_avg Average beauty rating of professor.

gender Gender of professor (collected as a binary variable at the time of the study): female, male.

ethnicity Ethnicity of professor: not minority, minority.

language Language of school where professor received education: English or non-English.

rank Rank of professor: teaching, tenure track, tenured.

pic_outfit Outfit of professor in picture: not formal, formal.

pic_color Color of professor's picture: color, black & white.

cls_did_eval Number of students in class who completed evaluation.

cls_students Total number of students in class.

cls_level Class level: lower, upper.

Source

Çetinkaya-Rundel M, Morgan KL, Stangl D. 2013. Looking Good on Course Evaluations. CHANCE 26(2).

See Also

The data in evals is a slight modification of openintro::evals().

evals

ev_charging

Description

This dataset consists of information on 3,395 electric vehicle charging sessions across locations for a workplace charging program. The data contains information on multiple charging sessions from 85 electric vehicle drivers across 25 workplace locations, which are located at facilities of various types.

Usage

ev_charging

Format

A data frame of 3,395 rows on 24 variables, where each row is an electric vehicle charging session.

session_id Unique identifier specifying the electric vehicle charging session

kwh_total Total energy used at the charging session, in kilowatt hours (kWh)

dollars Quantity of money paid for the charging session in U.S. dollars

created Date and time recorded at the beginning of the charging session

ended Date and time recorded at the end of the charging session

start_time Hour of the day when the charging session began (1 through 24)

end_time Hour of the day when the charging session ended (1 through 24)

charge_time_hrs Length of the charging session in hours

weekday First three characters of the name of the weekday when the charging session occurred

platform Digital platform the driver used to record the session (android, ios, web)

- **distance** Distance from the charging location to the driver's home, expressed in miles NA if the driver did not report their address
- user_id Unique identifier for each driver

station_id Unique identifier for each charging station

- **location_id** Unique identifier for each location owned by the company where charging stations were located
- **manager_vehicle** Binary variable that is 1 when the vehicle is a type commonly used by managers of the firm and 0 otherwise

facility_type Categorical variable that represents the facility type:

- 1 = manufacturing
- 2 = office
- 3 = research and development
- 4 = other
- **mon, tues, wed, thurs, fri, sat, sun** Binary variables; 1 if the charging session took place on that day, 0 otherwise

reported_zip Binary variable; 1 if the driver did report their zip code, 0 if they did not

Source

Harvard Dataverse doi:10.7910/DVN/NFPQLW. Note data is released under a CC0: Public Domain license.

geom_categorical_model

Regression model with one categorical explanatory/predictor variable

Description

geom_categorical_model() fits a regression model using the categorical x axis as the explanatory variable, and visualizes the model's fitted values as piece-wise horizontal line segments. Confidence interval bands can be included in the visualization of the model. Like geom_parallel_slopes(), this function has the same nature as geom_smooth() from the ggplot2 package, but provides functionality that geom_smooth() currently doesn't have. When using a categorical predictor variable, the intercept corresponds to the mean for the baseline group, while coefficients for the non-baseline groups are offsets from this baseline. Thus in the visualization the baseline for comparison group's median is marked with a solid line, whereas all offset groups' medians are marked with dashed lines.

Usage

```
geom_categorical_model(
  mapping = NULL,
  data = NULL,
  position = "identity",
   ...,
  se = TRUE,
  level = 0.95,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

position

. . .

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

- The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
- A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
- For more information and other ways to specify the position, see the layer position documentation.

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can *not* be passed through Unknown arguments that are not part of the 4 categories below are ignored.

- Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an **Aesthetics** section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
- When constructing a layer using a stat_*() function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

se Display confidence interval around model lines? TRUE by default.

- level Level of confidence interval to use (0.95 by default).
- na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
- show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
- inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

See Also

geom_parallel_slopes()

Examples

```
library(dplyr)
library(ggplot2)
p \le ggplot(mpg, aes(x = drv, y = hwy)) +
  geom_point() +
  geom_categorical_model()
р
# In the above visualization, the solid line corresponds to the mean of 19.2
# for the baseline group "4", whereas the dashed lines correspond to the
# means of 28.19 and 21.02 for the non-baseline groups "f" and "r" respectively.
# In the corresponding regression table however the coefficients for "f" and "r"
# are presented as offsets from the mean for "4":
model <- lm(hwy ~ drv, data = mpg)</pre>
get_regression_table(model)
# You can use different colors for each categorical level
p %+% aes(color = drv)
# But mapping the color aesthetic doesn't change the model that is fit
p %+% aes(color = class)
```

geom_parallel_slopes Parallel slopes regression model

Description

geom_parallel_slopes() fits parallel slopes model and adds its line output(s) to a ggplot object. Basically, it fits a unified model with intercepts varying between groups (which should be supplied as standard {ggplot2} grouping aesthetics: group, color, fill, etc.). This function has the same nature as geom_smooth() from {ggplot2} package, but provides functionality that geom_smooth() currently doesn't have.

Usage

```
geom_parallel_slopes(
  mapping = NULL,
  data = NULL,
  position = "identity",
   ...,
  se = TRUE,
  formula = y ~ x,
  n = 100,
```

20

```
fullrange = FALSE,
level = 0.95,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
```

mapping	Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options:
	If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).
position	A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:
	• The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
	• A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
	• For more information and other ways to specify the position, see the layer position documentation.
	Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can <i>not</i> be passed through Unknown arguments that are not part of the 4 categories below are ignored.
	• Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
	• When constructing a layer using a stat_*() function, the argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.

	 Inversely, when constructing a layer using a geom_*() function, the argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept. The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.
se	Display confidence interval around model lines? TRUE by default.
formula	Formula to use per group in parallel slopes model. Basic linear y ~ x by default.
n	Number of points per group at which to evaluate model.
fullrange	If TRUE, the smoothing line gets expanded to the range of the plot, potentially be- yond the data. This does not extend the line into any additional padding created by expansion.
level	Level of confidence interval to use (0.95 by default).
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

See Also

geom_categorical_model()

Examples

```
library(dplyr)
library(ggplot2)
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes(se = FALSE)
# Basic usage
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes()
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes(se = FALSE)
# Supply custom aesthetics
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
  geom_point() +
  geom_parallel_slopes(se = FALSE, size = 4)
```

```
# Fit non-linear model
example_df <- house_prices %>%
    slice(1:1000) %>%
    mutate(
        log10_price = log10(price),
        log10_size = log10(sqft_living)
    )
ggplot(example_df, aes(x = log10_size, y = log10_price, color = condition)) +
    geom_point(alpha = 0.1) +
    geom_parallel_slopes(formula = y ~ poly(x, 2))
# Different grouping
ggplot(example_df, aes(x = log10_size, y = log10_price)) +
    geom_point(alpha = 0.1) +
    geom_parallel_slopes(aes(fill = condition))
```

get_correlation Get correlation value in a tidy way

Description

Determine the Pearson correlation coefficient between two variables in a data frame using pipeable and formula-friendly syntax

Usage

```
get_correlation(data, formula, na.rm = FALSE, ...)
```

Arguments

data	a data frame object
formula	a formula with the response variable name on the left and the explanatory variable name on the right
na.rm	a logical value indicating whether NA values should be stripped before the computation proceeds.
	further arguments passed to stats::cor()

Value

A 1x1 data frame storing the correlation value

Examples

library(moderndive)

Compute correlation between mpg and cyl:
mtcars %>%

```
get_correlation(formula = mpg ~ cyl)
# Group by one variable:
library(dplyr)
mtcars %>%
  group_by(am) %>%
  get_correlation(formula = mpg ~ cyl)
# Group by two variables:
mtcars %>%
  group_by(am, gear) %>%
  get_correlation(formula = mpg ~ cyl)
```

get_regression_points Get regression points

Description

Output information on each point/observation used in an lm() regression in "tidy" format. This function is a wrapper function for broom::augment() and renames the variables to have more intuitive names.

Usage

```
get_regression_points(
  model,
  digits = 3,
  print = FALSE,
  newdata = NULL,
  ID = NULL
)
```

Arguments

model	an lm() model object
digits	number of digits precision in output table
print	If TRUE, return in print format suitable for R Markdown
newdata	A new data frame of points/observations to apply model to obtain new fitted values and/or predicted values y-hat. Note the format of newdata must match the format of the original data used to fit model.
ID	A string indicating which variable in either the original data used to fit model or newdata should be used as an identification variable to distinguish the observa- tional units in each row. This variable will be the left-most variable in the output data frame. If ID is unspecified, a column ID with values 1 through the number of rows is returned as the identification variable.

Value

A tibble-formatted regression table of outcome/response variable, all explanatory/predictor variables, the fitted/predicted value, and residual.

See Also

augment(), get_regression_table(), get_regression_summaries()

Examples

```
library(dplyr)
library(tibble)
# Convert rownames to column
mtcars <- mtcars %>%
  rownames_to_column(var = "automobile")
# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)</pre>
# Get information on all points in regression:
get_regression_points(mpg_model, ID = "automobile")
# Create training and test set based on mtcars:
training_set <- mtcars %>%
  sample_frac(0.5)
test_set <- mtcars %>%
  anti_join(training_set, by = "automobile")
# Fit model to training set:
mpg_model_train <- lm(mpg ~ cyl, data = training_set)</pre>
# Make predictions on test set:
get_regression_points(mpg_model_train, newdata = test_set, ID = "automobile")
```

get_regression_summaries

Get regression summary values

Description

Output scalar summary statistics for an lm() regression in "tidy" format. This function is a wrapper function for broom::glance().

Usage

```
get_regression_summaries(model, digits = 3, print = FALSE)
```

model	an lm() model object
digits	number of digits precision in output table
print	If TRUE, return in print format suitable for R Markdown

Value

A single-row tibble with regression summaries. Ex: r_squared and mse.

See Also

glance(), get_regression_table(), get_regression_points()

Examples

library(moderndive)

```
# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)</pre>
```

```
# Get regression summaries:
get_regression_summaries(mpg_model)
```

get_regression_table Get regression table

Description

Output regression table for an lm() regression in "tidy" format. This function is a wrapper function for broom::tidy() and includes confidence intervals in the output table by default.

Usage

```
get_regression_table(
  model,
  conf.level = 0.95,
  digits = 3,
  print = FALSE,
  default_categorical_levels = FALSE
)
```

model	an lm() model object
conf.level	The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.
digits	number of digits precision in output table
print	If TRUE, return in print format suitable for R Markdown
default_catego	rical_levels
	If TRUE, do not change the non-baseline categorical variables in the term col-
	umn. Otherwise non-baseline categorical variables will be displayed in the for-
	mat "categorical_variable_name: level_name"

Value

A tibble-formatted regression table along with lower and upper end points of all confidence intervals for all parameters lower_ci and upper_ci; the confidence levels default to 95\

See Also

tidy(), get_regression_points(), get_regression_summaries()

Examples

library(moderndive)

```
# Fit lm() regression:
mpg_model <- lm(mpg ~ cyl, data = mtcars)
# Get regression table:
```

```
get_regression_table(mpg_model)
```

Vary confidence level of confidence intervals
get_regression_table(mpg_model, conf.level = 0.99)

gg_parallel_slopes Plot parallel slopes model

Description

NOTE: This function is deprecated; please use geom_parallel_slopes() instead. Output a visualization of linear regression when you have one numerical and one categorical explanatory/predictor variable: a separate colored regression line for each level of the categorical variable

Usage

```
gg_parallel_slopes(y, num_x, cat_x, data, alpha = 1)
```

у	Character string of outcome variable in data
num_x	Character string of numerical explanatory/predictor variable in data
cat_x	Character string of categorical explanatory/predictor variable in data
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which lm is called.
alpha	Transparency of points

Value

A ggplot2::ggplot() object.

See Also

geom_parallel_slopes()

Examples

```
## Not run:
library(ggplot2)
library(dplyr)
library(moderndive)
# log10() transformations
house_prices <- house_prices %>%
  mutate(
    log10_price = log10(price),
   log10_size = log10(sqft_living)
  )
# Output parallel slopes model plot:
gg_parallel_slopes(
  y = "log10_price", num_x = "log10_size", cat_x = "condition",
  data = house_prices, alpha = 0.1
) +
  labs(
   x = "log10 square feet living space", y = "log10 price in USD",
    title = "House prices in Seattle: Parallel slopes model"
  )
# Compare with interaction model plot:
ggplot(house_prices, aes(x = log10_size, y = log10_price, col = condition)) +
  geom_point(alpha = 0.1) +
  geom_smooth(method = "lm", se = FALSE, size = 1) +
  labs(
   x = "log10 square feet living space", y = "log10 price in USD",
   title = "House prices in Seattle: Interaction model"
  )
```

house_prices

End(Not run)

house_prices

House Sales in King County, USA

Description

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015. This dataset was obtained from Kaggle.com/https://www.kaggle.com/harlfoxem/housesalesprediction/data

Usage

house_prices

Format

A data frame with 21613 observations on the following 21 variables.

id a notation for a house

date Date house was sold

price Price is prediction target

bedrooms Number of Bedrooms/House

bathrooms Number of bathrooms/bedrooms

sqft_living square footage of the home

sqft_lot square footage of the lot

floors Total floors (levels) in house

waterfront House which has a view to a waterfront

view Has been viewed

condition How good the condition is (Overall)

grade overall grade given to the housing unit, based on King County grading system

sqft_above square footage of house apart from basement

sqft_basement square footage of the basement

yr_built Built Year

yr_renovated Year when house was renovated

zipcode zip code

lat Latitude coordinate

long Longitude coordinate

sqft_living15 Living room area in 2015 (implies- some renovations) This might or might not have affected the lotsize area

sqft_lot15 lotSize area in 2015 (implies- some renovations)

Source

Kaggle https://www.kaggle.com/harlfoxem/housesalesprediction. Note data is released under a CCO: Public Domain license.

ipf_lifts International Power Lifting Results A subset of international powerlifting results.

Description

International Power Lifting Results A subset of international powerlifting results.

Usage

ipf_lifts

Format

A data frame with 41,152 entries, one entry for individual lifter

name Individual lifter name

sex Binary sex (M/F)

event The type of competition that the lifter entered

equipment The equipment category under which the lifts were performed

age The age of the lifter on the start date of the meet

age_class The age class in which the filter falls

division division of competition

bodyweight_kg The recorded bodyweight of the lifter at the time of competition, to two decimal places

weight_class_kg The weight class in which the lifter competed, to two decimal places

best3squat_kg Maximum of the first three successful attempts for the lift

best3bench_kg Maximum of the first three successful attempts for the lift

best3deadlift_kg Maximum of the first three successful attempts for the lift

place The recorded place of the lifter in the given division at the end of the meet

date Date of the event

federation The federation that hosted the meet

meet_name The name of the meet

Source

This data is a subset of the open dataset Open Powerlifting

Description

Ebay auction data for the Nintendo Wii game Mario Kart.

Usage

mario_kart_auction

Format

A data frame of 143 auctions.

- id Auction ID assigned by Ebay
- duration Auction length in days
- **n_bids** Number of bids
- cond Game condition, either new or used
- start_pr Price at the start of the auction
- ship_pr Shipping price
- total_pr Total price, equal to auction price plus shipping price
- ship_sp Shipping speed or method
- seller_rate Seller's rating on Ebay, equal to the number of positive ratings minus the number of negative ratings
- **stock_photo** Whether the auction photo was a stock photo or not, pictures used in many options were considered stock photos
- wheels Number of Wii wheels included in the auction
- title The title of the auctions

Source

This data is from https://www.openintro.org/data/index.php?data=mariokart

mass_traffic_2020

Description

2020 road traffic volume and crash level date for 13 Massachusetts counties

Usage

mass_traffic_2020

Format

A data frame of 874 rows representing traffic data at the 874 sites

site_id Site id

county County in which the site is located

community Community in which the site is located

rural_urban Rural (R) or Urban (U)

- dir Direction for traffic movement. Either 1-WAY, 2-WAY, EB (eastbound), RAMP or WB (westbound)
- functional_class Classification of road. Either Arterial, Collector, Freeway & Expressway, Interstate or Local Road

avg_speed Average traffic speed

total_volume Number of vehicles recorded at each site in 2020

crashes Number of vehicle crashes at each site

nonfatal_injuries Number of non-fatal injuries for all recorded vehicle crashes

fatal_injuries Number of fatal injuries for all recorded vehicle crashes

MA_schools

Massachusetts Public High Schools Data

Description

Data on Massachusetts public high schools in 2017

Usage

MA_schools

Format

A data frame of 332 rows representing Massachusetts high schools and 4 variables

school_name High school name.

- average_sat_math Average SAT math score. Note 58 of the original 390 values of this variable were missing; these rows were dropped from consideration.
- perc_disadvan Percent of the student body that are considered economically disadvantaged.
- size Size of school enrollment; small 13-341 students, medium 342-541 students, large 542-4264 students.

Source

The original source of the data are Massachusetts Department of Education reports https:// profiles.doe.mass.edu/state_report/, however the data was downloaded from Kaggle at https://www.kaggle.com/ndalziel/massachusetts-public-schools-data

ma_traffic_2020_vs_2019

Massachusetts 2020 vs. 2019 Traffic Data Comparison

Description

This dataset contains information about changes in speed, volume, and accidents of traffic between 2020 and 2019 by community and class of road in Massachusetts.

Usage

ma_traffic_2020_vs_2019

Format

A data frame of 264 rows each representing a different community in Massachusetts.

community City or Town

functional_class Class or group the road belongs to

change_in_speed Average estimated Speed (mph)

change_in_volume Average traffic

change_in_accidents Average number of accidents

Source

https://massdot-impact-crashes-vhb.opendata.arcgis.com/datasets/MassDOT::2020-vehicle-level-crash-c explore https://mhd.public.ms2soft.com/tcds/tsearch.asp?loc=Mhd&mod=

moderndive

Description

Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in "Statistical Inference via Data Science: A ModernDive into R and the tidyverse" available at https: //moderndive.com/.

Author(s)

Maintainer: Albert Y. Kim <albert.ys.kim@gmail.com> (ORCID) Authors:

• Chester Ismay <chester.ismay@gmail.com> (ORCID)

Other contributors:

- Andrew Bray <abray@reed.edu> (ORCID) [contributor]
- Delaney Moran <delaneyemoran@gmail.com> [contributor]
- Evgeni Chasnovski <evgeni.chasnovski@gmail.com> (ORCID) [contributor]
- Will Hopper <wjhopper510@gmail.com> (ORCID) [contributor]
- Benjamin S. Baumer <ben.baumer@gmail.com> (ORCID) [contributor]
- Marium Tapal <mariumtapal@gmail.com> (ORCID) [contributor]
- Wayne Ndlovu <waynedndlovu5@gmail.com> [contributor]
- Catherine Peppers <cpeppers@smith.edu> [contributor]
- Annah Mutaya <annahmutaya18@gmail.com> [contributor]
- Anushree Goswami <anushreeegoswami@gmail.com> [contributor]
- Ziyue Yang <zyang2k@gmail.com> (ORCID) [contributor]
- Clara Li <clarasepianli@gmail.com> (ORCID) [contributor]
- Caroline McKenna <carolinemckenna101@gmail.com> [contributor]
- Catherine Park < jcathyp@gmail.com> (ORCID) [contributor]
- Abbie Benfield <abbidabbers@gmail.com> [contributor]
- Georgia Gans < georgiagans@live.com> [contributor]
- Kacey Jean-Jacques <kjeanjacques@smith.edu> [contributor]
- Swaha Bhattacharya <itsswahabhattacharya@gmail.com> [contributor]
- Vivian Almaraz <viviansofia101@gmail.com> [contributor]
- Elle Jo Whalen <ewhalen@smith.edu> [contributor]
- Jacqueline Chen < jchen76@smith.edu> [contributor]
- Michelle Flesaker <mflesaker@smith.edu> [contributor]
- Irene Foster <ifoster 25@smith.edu> [contributor]

moderndive

- Aushanae Haller <aushanaenhaller@gmail.com> [contributor]
- Benjamin Bruncati <kbruncati@smith.edu> (ORCID) [contributor]
- Quinn White <quinnarlise@gmail.com> (ORCID) [contributor]
- Tianshu Zhang <tzhang26@smith.edu> (ORCID) [contributor]
- Katelyn Diaz <katndiaz@gmail.com> (ORCID) [contributor]
- Rose Porta <rporta@smith.edu> [contributor]
- Renee Wu <rwu30@smith.edu> [contributor]
- Arris Moise <amoise@smith.edu> [contributor]
- Kate Phan <kphan@smith.edu> [contributor]
- Grace Hartley <grace.hartley@gmail.com> [contributor]
- Silas Weden <silasweden@gmail.com> [contributor]
- Emma Vejcik <evejcik@gmail.com> [contributor]
- Nikki Schuldt <nikkischuldt@gmail.com> [contributor]
- Tess Goldmann <tessgoldmann@aol.com> [contributor]
- Hongtong Lin <cccynthialht@gmail.com> [contributor]
- Alejandra Munoz <amunozgarcia@smith.edu> [contributor]
- Elina Gordon-Halpern <egordonhalpern@smith.edu> [contributor]
- Haley Schmidt <heschmidt00@gmail.com> (ORCID) [contributor]

See Also

Useful links:

- https://moderndive.github.io/moderndive/
- https://github.com/moderndive/moderndive/
- Report bugs at https://github.com/moderndive/moderndive/issues

Examples

library(moderndive)

```
# Fit regression model:
mpg_model <- lm(mpg ~ hp, data = mtcars)</pre>
```

```
# Regression tables:
get_regression_table(mpg_model)
```

Information on each point in a regression: get_regression_points(mpg_model)

```
# Regression summaries
get_regression_summaries(mpg_model)
```

```
# Plotting parallel slopes models
library(ggplot2)
```

```
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
geom_point() +
geom_parallel_slopes(se = FALSE)
```

movies_sample Random sample of 68 action and romance movies

Description

A random sample of 32 action movies and 36 romance movies from https://www.imdb.com/ and their ratings.

Usage

movies_sample

Format

A data frame of 68 rows movies.

title Movie titleyear Year releasedrating IMDb rating out of 10 starsgenre Action or Romance

See Also

This data was sampled from the movies data frame in the ggplot2movies package.

mythbusters_yawn Data from Mythbusters' study on contagiousness of yawning

Description

From a study on whether yawning is contagious https://www.imdb.com/title/tt0768479/. The data here was derived from the final proportions of yawns given in the show.

Usage

mythbusters_yawn

Format

A data frame of 50 rows representing each of the 50 participants in the study.

subj integer value corresponding to identifier variable of subject ID

group string of either "seed", participant was shown a yawner, or "control", participant was not shown a yawner

yawn string of either "yes", the participant yawned, or "no", the participant did not yawn

36

old_faithful_2024 Old Faithful Eruptions Dataset (2024)

Description

This dataset contains records of eruptions from the Old Faithful geyser in Yellowstone National Park, recorded in 2024. It includes details such as the eruption ID, date and time of eruption, waiting time between eruptions, webcam availability, and the duration of each eruption.

Usage

old_faithful_2024

Format

A data frame with 114 rows and 6 variables:

eruption_id numeric. A unique identifier for each eruption.

date date. The date of the eruption.

time numeric. The time of the eruption in HHMM format (e.g., 538 corresponds to 5:38 AM, 1541 corresponds to 3:41 PM).

waiting numeric. The waiting time in minutes until the next eruption.

webcam character. Indicates whether the eruption was captured on webcam ("Yes" or "No").

duration numeric. The duration of the eruption in seconds.

Source

Volunteer information from https://geysertimes.org/retrieve.php

orig_pennies_sample A random sample of 40 pennies sampled from the pennies data frame

Description

A dataset of 40 pennies to be treated as a random sample with pennies() acting as the population. Data on these pennies were recorded in 2011.

Usage

orig_pennies_sample

Format

A data frame of 40 rows representing 40 randomly sampled pennies from pennies() and 2 variables

year Year of minting

age_in_2011 Age in 2011

Source

StatCrunch https://www.statcrunch.com:443/app/index.html?dataid=301596

See Also

pennies()

pennies

A population of 800 pennies sampled in 2011

Description

A dataset of 800 pennies to be treated as a sampling population. Data on these pennies were recorded in 2011.

Usage

pennies

Format

A data frame of 800 rows representing different pennies and 2 variables

year Year of minting

age_in_2011 Age in 2011

Source

StatCrunch https://www.statcrunch.com:443/app/index.html?dataid=301596

38

pennies_resamples Bootstrap resamples of a sample of 50 pennies

Description

35 bootstrap resamples with replacement of sample of 50 pennies contained in a 50 cent roll from Florence Bank on Friday February 1, 2019 in downtown Northampton, Massachusetts, USA https://goo.gl/maps/AF88fpvVfm12. The original sample of 50 pennies is available in pennies_sample()

Usage

pennies_resamples

Format

A data frame of 1750 rows representing 35 students' bootstrap resamples of size 50 and 3 variables

replicate ID variable of replicate/resample number.

name Name of student

year Year on resampled penny

See Also

pennies_sample()

pennies_sample A sample of 50 pennies

Description

A sample of 50 pennies contained in a 50 cent roll from Florence Bank on Friday February 1, 2019 in downtown Northampton, Massachusetts, USA https://goo.gl/maps/AF88fpvVfm12.

Usage

pennies_sample

Format

A data frame of 50 rows representing 50 sampled pennies and 2 variables

ID Variable used to uniquely identify each penny.

year Year of minting.

Note

The original pennies_sample has been renamed orig_pennies_sample() as of moderndive v0.3.0.

pop_sd

Description

This function calculates the population standard deviation for a numeric vector.

Usage

pop_sd(x)

Arguments

Х

A numeric vector for which the population standard deviation should be calculated.

Value

A numeric value representing the population standard deviation of the vector.

Examples

promotions

Bank manager recommendations based on (binary) gender

Description

Data from a 1970's study on whether gender influences hiring recommendations. Originally used in OpenIntro.org.

Usage

promotions

Format

A data frame with 48 observations on the following 3 variables.

id Identification variable used to distinguish rows.

gender gender (collected as a binary variable at the time of the study): a factor with two levels male and female

decision a factor with two levels: promoted and not

Source

Rosen B and Jerdee T. 1974. Influence of sex role stereotypes on personnel decisions. Journal of Applied Psychology 59(1):9-14.

See Also

The data in promotions is a slight modification of openintro::gender_discrimination().

promotions_shuffled One permutation/shuffle of promotions

Description

Shuffled/permuted data from a 1970's study on whether gender influences hiring recommendations.

Usage

promotions_shuffled

Format

A data frame with 48 observations on the following 3 variables.

id Identification variable used to distinguish rows.

gender shuffled/permuted (binary) gender: a factor with two levels male and female

decision a factor with two levels: promoted and not

See Also

promotions().

saratoga_houses

Description

Random sample of 1057 houses taken from full Saratoga Housing Data (De Veaux)

Usage

saratoga_houses

Format

A data frame with 1057 observations on the following 8 variables

price price (US dollars)

living_area Living Area (square feet)

bathrooms Number of Bathroom (half bathrooms have no shower or tub)

bedrooms Number of Bedrooms

fireplaces Number of Fireplaces

lot_size Size of Lot (acres)

age Age of House (years)

fireplace Whether the house has a Fireplace

Source

Gathered from https://docs.google.com/spreadsheets/d/1AY5eECqNIggKpYF3kYzJQBIuuOdkiclFhbjAmY3Yc8E/edit#gid=622599674

spotify_52_original Spotify 52-Track Sample Dataset

Description

This dataset contains a sample of 52 tracks from Spotify, focusing on two genres: deep-house and metal. It includes metadata about the tracks, the artists, and an indicator of whether each track is considered popular. This dataset is useful for comparative analysis between genres and for studying the characteristics of popular versus non-popular tracks within these genres.

Usage

spotify_52_original

Format

A data frame with 52 rows and 6 columns:

- track_id character. Spotify ID for the track. See: https://developer.spotify.com/documentation/ web-api/
- track_genre character. Genre of the track, either "deep-house" or "metal".

artists character. Names of the artists associated with the track.

- track_name character. Name of the track.
- **popular_or_not** character. Indicates whether the track is considered popular ("popular") or not ("not popular"). Popularity is defined as a score of 50 or higher which corresponds to the 75th percentile of the popularity column.

Source

https://developer.spotify.com/documentation/web-api/

Examples

```
data(spotify_52_original)
head(spotify_52_original)
```

spotify_52_shuffled Spotify 52-Track Sample Dataset with 'popular or not' shuffled

Description

This dataset contains a sample of 52 tracks from Spotify, focusing on two genres: deep-house and metal. It includes metadata about the tracks, the artists, and a shuffled indicator of whether each track is considered popular.

Usage

spotify_52_shuffled

Format

A data frame with 52 rows and 6 columns:

track_id character. Spotify ID for the track. See: https://developer.spotify.com/documentation/ web-api/

track_genre character. Genre of the track, either "deep-house" or "metal".

artists character. Names of the artists associated with the track.

track_name character. Name of the track.

- **popular_or_not** character. A shuffled version of the column of the same name in the spotify_52_original data frame.

Source

https://developer.spotify.com/documentation/web-api/

Examples

data(spotify_52_shuffled)
head(spotify_52_shuffled)

spotify_by_genre Spotify by Genre Dataset

Description

This dataset contains information on 6,000 tracks from Spotify, categorized by one of six genres. It includes various audio features, metadata about the tracks, and an indicator of popularity. The dataset is useful for analysis of music trends, popularity prediction, and genre-specific characteristics.

Usage

spotify_by_genre

Format

A data frame with 6,000 rows and 21 columns:

track_id character. Spotify ID for the track. See: https://developer.spotify.com/documentation/ web-api/

artists character. Names of the artists associated with the track.

album_name character. Name of the album on which the track appears.

track_name character. Name of the track.

- duration_ms numeric. Duration of the track in milliseconds.

explicit logical. Whether the track has explicit content.

energy numeric. Energy score of the track (0-1).

key numeric. The key the track is in (0-11 where 0 = C, 1 = C#/Db, etc.).

loudness numeric. The loudness of the track in decibels (dB).

mode numeric. Modality of the track (0 = minor, 1 = major).

speechiness numeric. Speechiness score of the track (0-1).

acousticness numeric. Acousticness score of the track (0-1).

instrumentalness numeric. Instrumentalness score of the track (0-1).

liveness numeric. Liveness score of the track (0-1).

valence numeric. Valence score of the track (0-1), indicating the musical positiveness.

tempo numeric. Tempo of the track in beats per minute (BPM).

- time_signature numeric. Time signature of the track (typically 3, 4, or 5).
- **track_genre** character. Genre of the track (country, deep-house, dubstep, hip-hop, metal, and rock).
- **popular_or_not** character. Indicates whether the track is considered popular ("popular") or not ("not popular"). Popularity is defined as a score of 50 or higher which corresponds to the 75th percentile of the popularity column.

Source

https://developer.spotify.com/documentation/web-api/

Examples

data(spotify_by_genre)
head(spotify_by_genre)

tactile_prop_red Tactile sampling from a tub of balls

Description

Counting the number of red balls in 33 tactile samples of size n = 50 balls from https://github. com/moderndive/blob/master/data-raw/sampling_bowl.jpeg

Usage

tactile_prop_red

Format

A data frame of 33 rows representing different groups of students' samples of size n = 50 and 4 variables

group Group members
replicate Replicate number
red_balls Number of red balls sampled out of 50
prop_red Proportion red balls out of 50

See Also

bowl()

um, first numeric
ormat. It
nting the
the sum-
ric, char-

Description

This function calculates the five-number summary (minimum, first quartile, median, third quartile, maximum) for specified numeric columns in a data frame and returns the results in a long format. It also handles categorical, factor, and logical columns by counting the occurrences of each level or value, and includes the results in the summary. The type column indicates whether the data is numeric, character, factor, or logical.

Usage

tidy_summary(df, columns = names(df), ...)

Arguments

df	A data frame containing the data. The data frame must have at least one row.
columns	Unquoted column names or tidyselect helpers specifying the columns for which to calculate the summary. Defaults to call columns in the inputted data frame.
	Additional arguments passed to the min, quantile, median, and max functions, such as na.rm.

Value

A tibble in long format with columns:

column The name of the column.

n The number of non-missing values in the column for numeric variables and the number of nonmissing values in the group for categorical, factor, and logical columns.

group The group level or value for categorical, factor, and logical columns.

type The type of data in the column (numeric, character, factor, or logical).

min The minimum value (for numeric columns).

Q1 The first quartile (for numeric columns).

mean The mean value (for numeric columns).

median The median value (for numeric columns).Q3 The third quartile (for numeric columns).max The maximum value (for numeric columns).sd The standard deviation (for numeric columns).

Examples

```
# Example usage with a simple data frame
df <- tibble::tibble(
    category = factor(c("A", "B", "A", "C")),
    int_values = c(10, 15, 7, 8),
    num_values = c(8.2, 0.3, -2.1, 5.5),
    one_missing_value = c(NA, 1, 2, 3),
    flag = c(TRUE, FALSE, TRUE, TRUE)
)
# Specify columns
tidy_summary(df, columns = c(category, int_values, num_values, flag))
# Defaults to full data frame (note an error will be given without
# specifying `na.rm = TRUE` since `one_missing_value` has an `NA`)
tidy_summary(df, na.rm = TRUE)
# Example with additional arguments for quantile functions
tidy_summary(df, columns = c(one_missing_value), na.rm = TRUE)
```

un_member_states_2024 UN Member States 2024 Dataset

Description

This dataset contains information on 193 United Nations member states as of 2024. It includes various attributes such as country names, ISO codes, official state names, geographic and demographic data, economic indicators, and participation in the Olympic Games. The data is designed for use in statistical analysis, data visualization, and educational purposes.

Usage

```
un_member_states_2024
```

Format

A data frame with 193 rows and 39 columns:

country character. Name of the country.

iso character. ISO 3166-1 alpha-3 country code. See: https://en.wikipedia.org/wiki/ISO_ 3166-1_alpha-3

- official_state_name character. Official name of the country. See: https://en.wikipedia. org/wiki/List_of_countries_and_dependencies_and_their_capitals_in_native_languages
- continent factor. Continent where the country is located. See: https://en.wikipedia.org/ wiki/Continent
- region character. Specific region within the continent.
- capital_city character. Name of the capital city. See: https://en.wikipedia.org/wiki/ List_of_national_capitals_by_population
- capital_population numeric. Population of the capital city.
- capital_perc_of_country numeric. Percentage of the country's population living in the capital.
- capital_data_year integer. Year the capital population data was collected.
- gdp_per_capita numeric. GDP per capita in USD. See: https://data.worldbank.org/indicator/ NY.GDP.PCAP.CD
- gdp_per_capita_year numeric. Year the GDP per capita data was collected.
- summers_competed_in numeric. Number of times the country has competed in the Summer
 Olympics
- summer_golds integer. Number of gold medals won in the Summer Olympics.
- summer_silvers integer. Number of silver medals won in the Summer Olympics.
- summer_bronzes integer. Number of bronze medals won in the Summer Olympics.
- summer_total integer. Total number of medals won in the Summer Olympics.
- winters_competed_in integer. Number of times the country has competed in the Winter Olympics
- winter_golds integer. Number of gold medals won in the Winter Olympics.
- winter_silvers integer. Number of silver medals won in the Winter Olympics.
- winter_bronzes integer. Number of bronze medals won in the Winter Olympics.
- winter_total integer. Total number of medals won in the Winter Olympics.
- combined_competed_ins integer. Total number of times the country has competed in both Summer and Winter Olympics. See: https://en.wikipedia.org/wiki/All-time_Olympic_ Games_medal_table
- combined_golds integer. Total number of gold medals won in both Summer and Winter Olympics.
- **combined_silvers** integer. Total number of silver medals won in both Summer and Winter Olympics.
- **combined_bronzes** integer. Total number of bronze medals won in both Summer and Winter Olympics.
- combined_total integer. Total number of medals won in both Summer and Winter Olympics.
- **driving_side** character. Indicates whether the country drives on the left or right side of the road. See: https://en.wikipedia.org/wiki/Left-_and_right-hand_traffic
- **obesity_rate_2024** numeric. Percentage of the population classified as obese in 2024. See: https://en.wikipedia.org/wiki/List_of_countries_by_obesity_rate
- obesity_rate_2016 numeric. Percentage of the population classified as obese in 2016.
- has_nuclear_weapons_2024 logical. Indicates whether the country has nuclear weapons as of 2024. See: https://en.wikipedia.org/wiki/List_of_states_with_nuclear_weapons

- population_2024 numeric. Population of the country in 2024. See: https://data.worldbank. org/indicator/SP.POP.TOTL
- area_in_square_km numeric. Area of the country in square kilometers. See: https://en. wikipedia.org/wiki/List_of_countries_and_dependencies_by_area
- area_in_square_miles numeric. Area of the country in square miles.
- population_density_in_square_km numeric. Population density in square kilometers.
- population_density_in_square_miles numeric. Population density in square miles.
- income_group_2024 factor. World Bank income group classification in 2024. See: https: //data.worldbank.org/indicator/NY.GNP.PCAP.CD
- life_expectancy_2022 numeric. Life expectancy at birth in 2022. See: https://en.wikipedia. org/wiki/List_of_countries_by_life_expectancy
- fertility_rate_2022 numeric. Fertility rate in 2022 (average number of children per woman). See: https://en.wikipedia.org/wiki/List_of_countries_by_total_fertility_rate
- hdi_2022 numeric. Human Development Index in 2022. See: https://en.wikipedia.org/ wiki/List_of_countries_by_Human_Development_Index

Examples

data(un_member_states_2024)
head(un_member_states_2024)

Index

* datasets alaska_flights, 3 almonds_bowl, 4 almonds_sample, 4 almonds_sample_100, 5 amazon_books, 5 avocados, 6 babies, 7 bowl, 8 bowl_sample_1,9 bowl_samples, 8 coffee_quality, 10 coffee_ratings, 11 DD_vs_SB, 13 early_january_2023_weather, 13 early_january_weather, 14 envoy_flights, 15 ev_charging, 17 evals, 16 house_prices, 29 ipf_lifts, 30 MA_schools, 32 ma_traffic_2020_vs_2019, 33 mario_kart_auction, 31 mass_traffic_2020, 32 movies_sample, 36 mythbusters_yawn, 36 old_faithful_2024, 37 orig_pennies_sample, 37 pennies, 38 pennies_resamples, 39 pennies_sample, 39 promotions, 40 promotions_shuffled, 41 saratoga_houses, 42 spotify_52_original, 42 spotify_52_shuffled, 43 spotify_by_genre, 44 tactile_prop_red, 45

un_member_states_2024, 47 aes(), 18, 21 alaska_flights, 3 almonds_bowl, 4 almonds_sample, 4 almonds_sample_100, 5 amazon_books, 5 as.data.frame, 28 augment(), 25avocados, 6 babies, 7 borders(), 19, 22 bowl, 8 bowl(), 9, 46 bowl_sample_1,9 bowl_samples, 8 coffee_quality, 10 coffee_ratings, 11 DD_vs_SB, 13 early_january_2023_weather, 13 early_january_weather, 14 envoy_flights, 15 ev_charging, 17 evals, 16 fortify(), 18, 21 geom_categorical_model, 18 geom_categorical_model(), 22 geom_parallel_slopes, 20 geom_parallel_slopes(), 18, 20, 27, 28 get_correlation, 23 get_regression_points, 24 get_regression_points(), 26, 27 get_regression_summaries, 25 get_regression_summaries(), 25, 27

INDEX

```
get_regression_table, 26
get_regression_table(), 25, 26
gg_parallel_slopes, 27
ggplot(), 18, 21
ggplot2::ggplot(), 28
glance(), 26
house_prices, 29
ipf_lifts, 30
key glyphs, 19, 22
layer position, 19, 21
layer(), 19, 21, 22
MA_schools, 32
ma_traffic_2020_vs_2019, 33
mario_kart_auction, 31
mass_traffic_2020, 32
moderndive, 34
moderndive-package (moderndive), 34
movies_sample, 36
mythbusters_yawn, 36
nycflights13::airlines, 3
nycflights13::airports, 3
nycflights13::flights, 3, 14
nycflights13::planes, 3
nycflights13::weather, 3, 15
nycflights23::airlines, 15
nycflights23::airports, 15
nycflights23::flights, 14, 15
nycflights23::planes, 15
nycflights23::weather, 14, 15
old_faithful_2024, 37
openintro::evals(), 16
openintro::gender_discrimination(), 41
orig_pennies_sample, 37
orig_pennies_sample(), 39
pennies, 38
pennies(), 37, 38
pennies_resamples, 39
pennies_sample, 39
pennies_sample(), 39
pop_sd, 40
promotions, 40
promotions(), 41
```

promotions_shuffled, 41
saratoga_houses, 42
spotify_52_original, 42
spotify_52_shuffled, 43
spotify_by_genre, 44
stats::cor(), 23
tactile_prop_red, 45
tidy(), 27
tidy_summary, 46
un_member_states_2024, 47